

Abstract – The Level 1 Muon Trigger subsystem for BTeV will

be implemented using the same architectural building blocks as
the BTeV Level 1 Pixel Trigger: pipelined field programmable
gate arrays feeding a farm of dedicated processing elements. The
muon trigger algorithm identifies candidate tracks, and is
sensitive to the muon charge (sign); candidate dimuon events are
identified by complementary charge track-pairs. To insure that
the trigger is operating effectively, the trigger development team
is actively collaborating in an independent multi-university
research program for reliable, self-aware, fault adaptive behavior
in real-time embedded systems (RTES). Key elements of the
architecture, algorithm, performance, and engineered reliability
are presented.

I. INTRODUCTION

HE proposed BTeV [1] Level 1 Trigger consists of
similar yet independent Pixel and Muon Triggers,

which use pipelined programmable logic and embedded
processors to arrive at trigger opinions for each 132 ns beam
crossing. These opinions are weighed by the Global Level 1
Trigger to produce a Level 1 trigger decision at the beam-
crossing rate, with a resource-bounded latency of a few
milliseconds.

 The complexity of the system, in both hardware and
software, raise serious concerns with respect to reliability.

Manuscript received October 29, 2003. This work was supported in part by
the National Science Foundation Information Technology Research Program
(number #ACI-0121658)

Michael J. Haney is with the University of Illinois, Urbana, IL 61801 USA
(telephone: 217-244-6425, e-mail: m-haney@uiuc.edu).

The RTES Collaboration consists of: D. Beauregard, R. Iyer, Z.
Kalbarczyk, Q. Liu, and L. Wang (Design and Validation of Reliable
Networked Systems Research Group of the Center for Reliable and High-
Performance Computing (CRHC) of the Coordinated Science Laboratory
(CSL), University of Illinois); M. Haney and M. Selen (High Energy Physics
Group of the Department of Physics, University of Illinois); D. Mosse and O.
Shigiltchoff (Fault Tolerant Real-Time Systems (FORTS) Group in the
Department of Computer Science, Link-to-Learn educational program, and
College in High School educational program, University of Pittsburgh); R.
Chopade, L. Hovey, M. Jung, D. Messie, and J. Oh (Department of Electrical
Engineering and Computer Science, Syracuse University); S. Stone (High
Energy Physics Group of the Department of Physics, Syracuse University); T.
Bapty, S. Neema, S. Nordstrom, S. Shetty, S. Vashishtha, and D. Yao (ISIS
(Institute for Software Integrated Systems), Vanderbilt University); P. Sheldon
and E. Vaandering (BTeV Group, part of the High Energy Physics Group in
the Department of Physics and Astronomy, Vanderbilt University); J. Butler
and E. Gottschalk, (BTeV Collaboration of the Particle Physics Division,
Fermi National Accelerator Laboratory); J. Kowalkowski and M. Votava
(Computing Division, Fermi National Accelerator Laboratory); J. Appel
(Fermilab Education Office, Fermi National Accelerator Laboratory).

With thousands of embedded processors operating
concurrently, undetected faults can corrupt the trigger results
in a manner that can be extremely difficult to diagnose after
the fact. And a local fault can have a global impact if not
addressed. An aggressive approach to detection and fault
adaptation is required.

The architecture and algorithm of the Level 1 Muon Trigger
is presented, followed by a discussion of the tools that are
being developed to address these reliability concerns.

II. BTEV LEVEL 1 MUON TRIGGER
The Level 1 Muon Trigger processes wire-chamber hit data

from 3 stations of 4 layers each. The stations (groups of layers)
are separated by iron toroids. The layers consist of octants of
common-oriented tubes. All tubes are transverse to the beam
line. The R layers (views) have tubes perpendicular to the
radial centerline of the octant; the stereo layers (U, V) have
tubes oriented at +/- 22.5 degrees with respect to the R layer.
The fourth layer in each station (denoted “S”) is a duplicate R
layer. There are approximately 36*103 wire chambers in the
detector.

Hit data is provided per tube, per 132 ns crossing, over 96
fiber optic cables. The Preprocessors of the Muon Trigger
performs adjacent-tube hit compression and radial sorting. The
radial sorting (from outer-most to inner-most) is an important
performance aspect. Subsequent processing is performed on a
time/space-available basis. Processing from the outer-most to
the inner-most preferentially biases the result in favor of
detecting high(er) PT tracks, and ignoring the “ring of fire” hits
in the tubes closest to the beam line. The Preprocessors will be
implemented with field programmable gate arrays (FPGAs);
48 Preprocessor boards are required.

The compressed/sorted data are provided to a farm of
embedded processors for analysis. Work is assigned to
processor-groups (farmlets) on a round-robin basis; work is
assigned to individual processors on a next-available basis.
The specific processor architecture is unimportant to the Muon
Trigger algorithm. For the sake of expediency, current
development work employs a Texas Instruments DSP (TMS
320C6x family). The actual processor used will be selected at
time of construction in FY2005. However, the number of
processors per farmlet does have a significant influence on the
buffer memory requirements of the farmlet to support round-
robin assignment without backpressure or overflow. Queuing

Real-Time Embedded System Support for the
BTeV Level 1 Muon Trigger

Michael J. Haney and the RTES Collaboration

T

studies indicate that 6 processors per farmlet will require
buffer capacity for 20 events. At 2 Kbytes/event, this is at most
a modest resource requirement.

Each octant is processed independently. Further, each view
(i.e. a set of three layers, one from each station, with the same
orientation) is processed separately. Consider as an example
the R view (layers) from stations 1, 2, and 3, denoted as R1, R2,
and R3 respectively. A hit-tuple (r1, r2, r3) is declared to be a
muon track if the χ2 fit of the track points back to the
interaction point. Fortunately, it is not necessary to implement
this expensive computation for every hit-tuple. By examining
Monte Carlo generated collections of tube hits (and noise), it
has been determined that a viable alternative is to perform a
coordinate rotation and measure the distance of (r1’, r2’, r3’)
from the plane of tracks (R3 = 27.69 - 1.26*R1 + 2.20*R2)
which originate from the interaction point. Further, the sign of
the distance (above or below the plane) is an indication of the
track curvature, and hence of the muon charge (+/-).

The implementation of this algorithm operates from the list
of hits from R2. For each r2, a directed search is made for
candidate R3 hits. It is not necessary to search the entire R3
layer, since hits outside of a bounded region (determined by
the value of r2) will exceed the limits for an adequate fit. For
each (r2, r3), a directed search of R1 then provides the tuple (r1,
r2, r3). This process is repeated for each view (the second R
view (S), and both stereo views (U, V)), and for each octant.
Since the track finding process also estimates charge (sign)
from track curvature, dimuon events are detected by finding a
pair of tracks with complementary charge (curvature).

Using a 150 MHz DSP, the above processing can be
performed in 33 µs (mean execution time), which at 132 ns
beam-crossing time, requires 227 processors. 250 are specified
in the design, with farmlet buffering to accommodate the
fluctuations in processing time.

It is no coincidence that the Muon Trigger is strikingly
similar to Pixel Trigger [2]. Both employ an FPGA-rich
preprocessing component, followed by an embedded processor
farm for subsequent analysis. The primary differences between
the triggers are that the Pixel Trigger has two FPGA layers
(Preprocessor, and Segment Tracker) compared to the Muon
Trigger’s one, and the overall scale of the triggers. The Pixel
Trigger is essentially 10 times larger than the Muon Trigger in
board count, due to the increased computational demands of
the Pixel Trigger. However, as a purposeful cost-savings plan,
the Muon Trigger is being developed to utilize, wherever
possible, the same hardware elements as the Pixel Trigger.
Hence the Muon Trigger embedded processor farm and
interconnection switch will be identical to the Pixel Trigger,
except for a smaller size and different executable code.

III. REAL TIME EMBEDDED SYSTEM SUPPORT
To address concerns about the hardware and software

complexity of the BTeV Trigger, an independent research
initiative to study Real-Time Embedded Systems (RTES) was

undertaken. The RTES Collaboration is funded by the National
Science Foundation Information Technology Research
Program, and is a multi-university group of computer
scientists, electrical engineers, and physicists [3].

The mission of RTES (taken from the introduction to the
NSF proposal), is “to develop methodologies and tools for
designing and implementing very large-scale real-time
embedded computer systems that:
1. achieve ultra high computational performance through use

of parallel hardware architectures
2. achieve and maintain functional integrity via distributed,

hierarchical monitoring and control
3. are required to be highly available
4. are dynamically reconfigurable, maintainable, and

evolvable.”
The RTES project consists of 3 primary software

development branches (and an educational outreach element
which will not be discussed here): a means for modeling and
developing code for a large system of embedded processors, a
strong self-protection mechanism to insure that code is
executing, and a small-footprint solution for instrumenting and
controlling execution throughout the system. These are each
discussed in the following sections.

A. Model Integrated Computing (MIC)
Developing code for a large, complex system of FPGAs and

embedded processors is a difficult task by itself. Incorporating
a diversity of fault detection and mitigation strategies,
coordinating the code generation for the processors, and
modeling the system both prior to deployment as well as in
operation is a daunting task.

To address this, Model Integrated Computing [4, 5] has been
adopted. This approach utilizes a graphical representation the
physical architecture, logical architecture, and the behavior of
the system. Distinct (but integrated) drawings define the
connectivity between hardware, as well as the computational
tasks to be performed; the assignment of process to processor
is thus orthogonalized from the hardware and software
specification. Further, finite-state machine drawings can be
used to simplify the specification of behavior, above and
beyond the development of point-code to implement tasks.

Modeling is also provided. The described system can be
well studied prior to operation. And with the incorporation of
messaging from the embedded processors, the operating
behavior of the run-time system can be displayed on the same
set of drawings used to represent the system.

This approach is well suited to the operational choice of the
C6x DSP, as a detailed hardware/software/kernel solution for
this processor has already been developed.

B. Adaptive Reconfigurable Mobile Objects for Reliability
(ARMORs)
ARMORs provide a strong solution-in-depth for reliable

execution on full-rank computational elements [6, 7]. It is well
suited to Linux operation (for which it was developed), but has
been ported to Windows as well.

ARMORs fall into 3 primary types. The execution ARMOR
is the most common. It provides direct monitoring and support
of a “protected” application, including checkpointing for the
application, and self-checking for the ARMOR itself. If the
application hangs or crashes, the ARMOR detects this failure,
and resets or restarts the application as appropriate.

To insure that the execution ARMOR does not fail, a
supervisory Fault Tolerant Manager (FTM) ARMOR monitors
subordinate ARMORs, resetting or restarting them as
necessary.

And to insure that the FTM ARMOR does not fail, a
“heartbeat” ARMOR monitors the FTM ARMOR, resetting or
restarting it as necessary.

ARMORs are hierarchical and communicate via sockets. As
such they can exist on any number of networked processors.
Hardware failures can be handled by the FTM ARMOR by
restarting the relevant execution ARMOR(s) and protected
application(s) on any functioning processor with the resources
needed by the application. ARMORs are also modular and
highly configurable. A micro-kernel provides the basic
operational behavior; user-written “elements” can be added to
implement specific detection and recovery mechanisms.

In the context of BTeV, the ARMORs will see primary use
in the Supervisory and Monitor subsystems, the various high
level Control subsystems, as well as in the Level 2/3 Linux
farm. Each of the Muon Trigger, Pixel Trigger, and Global
Level 1 Trigger have their own Supervisor and Monitor
subsystem (PTSM, MTSM, GL1SM) which is responsible for
configuring FPGAs, loading code into embedded processors,
monitoring operation, and detecting failures. Each of these
“xxSM” subsystems will be a hierarchical network of a top-
level host, intermediate-level regional managers, and low-level
local managers to provide control and monitoring. Each of
these will have ARMORs to perform or protect the control and
monitoring function.

At the highest control level of BTeV, Slow Control and Run
Control will utilize ARMORs to insure that the control
applications and displays are executing. This capability has
already been demonstrated [8].

And while not the topic of this paper, the Level 2/3 trigger
farm which will use 2000+ Linux computers is a perfect
candidate for ARMORs, providing direct protection of the
L2/3 trigger application. The homogeneity of the farm and the
ability of the FTM ARMOR to restart applications on remote
processors immediately translates hardware failure into little
more than a graceful loss of capacity.

C. Very Light-weight Agents (VLAs)
Complementary to the strength and resource-needs of

ARMORs, VLAs provide a universal, minimal footprint
solution for monitoring and control support [9]. These are
small, fast, low-impact building blocks that can be
incorporated in the embedded processors themselves, as well
as at each level throughout the xxSM control system, and in
the L2/3 Linux farm. VLAs handle communications to and

from higher-level entities, and well as monitor and control
lower-level entities. Common messaging and API presentation
make these software elements available at every level of the
system.

Because of their size and speed, VLAs are crucial to
detection and mitigation in the embedded processor farm.
VLAs have passive and active components. The passive
components handle communications traffic from the trigger
application in the embedded processor to the higher-level
control processes, as well as control traffic from the xxSM host
down to the embedded processors. The passive components
also collect statistics and provide summary information to the
higher levels.

The active VLA components are scheduled during processor
idle time, and search for potential faults by direct testing
(memory tests, checksums, etc.).

Like the ARMORs, the VLAs are a balance of basis code
that provides the primary communications and control
infrastructure, complemented by user-written modules for
trigger-specific detection and mitigation.

Upon detection of a fault, the VLA can variously mitigate
the problem locally (e.g. by reloading and restarting the trigger
application to handle a hung application), and/or report the
fault up the control chain for a higher-level decision to be
made. A key feature throughout the system is the separation of
capability from policy. The VLAs have sweeping powers to
reset, restart, reload, and redirect, but whether and which of
these powers is invoked is entirely controlled by a system-wide
“authority vector” which defines the scope of who can decide
what. At the most primitive setting, all faults are reported to
the (human) operator, and all mitigation is directed from the
operator’s console. At the most sophisticated setting, each
VLA and ARMOR acts autonomously, applying its best-guess
at a fault mitigation solution, while reporting the fault, and the
solution, to a higher level. It can be expected that different
VLAs and ARMORs may interfere with each other by
applying contradictory mitigation strategies. Effective system
operation will require a balance between these extremes in
policy, which will be implemented as differing values of the
authority vector.

IV. SUMMARY

The Level 1 Muon Trigger will require a large number of
programmable logic devices and embedded processors, which
must function reliably or fail gracefully in order to deliver
physics results. To insure this, an aggressive fault detection
and mitigation research project (RTES) is developing
modeling and development tools, protection modules, and
instrumentation and control features, which in principle could
be applied to any large-scale, embedded system.

A prototype of the RTES solution is in development with
planned presentation at the SuperComputing 2003 [10].

V. REFERENCES
[1] www-btev.fnal.gov
[2] G. I. Cancelo, E. E. Gottschalk, F. V. Pavilcek, M. Wang, and J. Y. Wu,

“Data Flow Analysis of a Highly Parallel Processor for a Level 1 Pixel
Trigger,” IEEE Trans. Nucl. Sci., submitted for publication in these
proceedings.

[3] www-btev.fnal.gov/public/hep/detector/rtes/index.shtml
[4] www.isis.vanderbilt.edu/Research/mic.html
[5] T. Bapty, S. Neema, S. Nordstrom, S. Shetty, D. Vashishtha, J. Overdorf,

and P. Sheldon, “Modeling and Generation Tools for Large-Scale, Real-
Time Embedded Systems,” in the Proceedings of the 10th IEEE
International Conference on Engineering of Computer Based Systems,
Huntsville, AL, April 2003.

[6] www.crhc.uiuc.edu/DEPEND/projects-ARMORs.htm
[7] K. Whisnant, Z. Kalbarczyk, and R. Iyer, “A Foundation for Adaptive

Fault Tolerance in Software,” in the Proceedings of the 10th IEEE
International Conference on Engineering of Computer Based Systems,
Huntsville, AL, April 2003.

[8] L. Picolli, “Evaluation of RTES components in a large scale DAQ,” in
the Proceedings of the 13th IEEE-NPSS Real Time Conference,
Montréal, Canada, May 2003.

[9] S. Tamhankar, J. Oh, and D. Mosse, “Design of Very Lightweight
Agents for Reactive Embedded Systems,” S. Tamhankar, J. Oh, Syracuse
University, and D. Mosse, University of Pittsburgh, in the Proceedings of
the 10th IEEE International Conference on the Engineering of Computer
Based Systems, Huntsville, AL, April 2003.

[10] www.sc-conference.org/sc2003

